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Abstrucr - This paper presents a numerically stable 
methodology. for the electromagnetic analysis of three- 
dimensional interconnect structures from very low (almost 
dc) to multi-GHz frequencies. The proposed methodology is 
based on a generalized version of the partial element 
equivalent circuit interpretation of the electric field integral 
equation that utilizes triangular cells for the discretization of 
conductor surfaces and thus is capable of handling structures 
of arbitrary shapes. The numerical stability of the 
approximate problem at very low frequencies is achieved 
through capturing an appropriate tree of the network graph, 
yielding an enhanced circuit mesh analysis. Numerical 
experiments are used to demonstrate the numerical stability 
of the numerical methodology even for frequencies at which 
the structure under study is a minute fraction of the 
wavelength. 

I. INTRODUCTION 

Broadband electromagnetic analysis of interconnect 
for mixed-signal integrated circuits is essential for 
accurate electromagnetic interference prediction in 
compact, high-density, multi-functional systems aimed 
toward system-on-a-chip designs, The interconnect and 
circuit density in such systems is such that all 
electromagnetic interactions need be taken into account 
for accurate design. This fact has motivated the trend 
toward the development of a new breed of 
electromagnetic CAD tools that can address the 
complexity of such circuits, while providing the 
electromagnetic accuracy needed for accurate analysis. 
Despite their complexity, the mixed-signal nature of their 
application makes these integrated circuits electrically 
small over a significant bandwidth of their application. It 
is well known that standard electromagnetic integral 
equation solvers become numerically unstable and thus 
unreliable when applied to the solution of electrically 
small structures (e.g. [l]-[3]). This difficulty in closely 
related to the increasing decoupling of the electric and 
magnetic fields as the frequency tends to zero. In order to 
highlight one of the aspects of this decoupling, consider 
the equation ,? = - jwi - VQ1 that leads to the electric 

field integral equation (EFIE) formulation of the 

electromagnetic boundary value problem. Recognizing the 

fact that the vector potential term is proportional to jwj , 

while the scalar potential is proportional to (jw)’ V . j , it 

is clear that the contribution from the vector potential term 
will be lost in the finite-precision numerical solution of 
the problem as the frequency tends to zero. As explained 
in detail in l-31, this difficulty can be overcome through a 
loop-star or loop-tree decomposition of the unknown 
current distribution, so that the solenoidal (divergence- 
free) component of the current, responsible for the quasi- 
static magnetic field, and its complementary (curl-free) 
component, responsible for the quasi-static electric field, 
are modeled independently. The two components of the 
current density exhibit disparate frequency dependency 
that is instrumental in improving the stability of the 
numerical solution of the EFIE at very low frequencies 
while maintaining solution accuracy. 

It is shown in this paper that, in the context of the 
partial element equivalent circuit (PEEC) interpretation of 
the EFIE [4], the benefits from the loop-tree-like 
decomposition of the unknown current density can be 
realized in an alternative and more straightforward 
fashion, through the re-formulation of the PEEC 
interpretation of the EFIE in the spirit of an enhanced 
circuit mesh analysis. 

II. MATHEMATICAL FORMULATION 

The important attribute of the PEEC formulation of the 
electromagnetic problem is that leads directly to a 
description of the electromagnetic problem in terms 
electromagnetically retarded couplings between the 
unknown currents and charges in the discrete model that 
maintain their inductive and capacitive nature familiar 
from the distributed lumped-circuit representation of 
electromagnetic effects at low frequencies. Thus the 
PEEC model can be used for the direct synthesis of 
equivalent circuit representations of electromagnetic 
interactions in complex integrated circuits. The PEEC 
formulation is based in the enforcement of a discrete 
approximation of the equation for the electric field, 
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E(F) = -jw;i(r’) - w(r) (1) 
through a Galerkin’s testing at each and every element in 
the discrete model of the interconnect structure. In the 

above equation, j(3) and 0(T) are, respectively, the 

magnetic vector and electric scalar potentials. Their 
expressions in terms of Poisson’s integrals are well 
known. In the proposed formulation, polarization currents, 
are introduced to account for the presence of 
inhomogeneous dielectric volumes. Therefore, the’ 
Green’s function used in the Poisson’s integrals for the 
potential is the free-space Green’s function. Furthermore, 
a triangular mesh is used for the discretization of 
conductor surfaces. Dielectric volumes are discretized by 
means of prisms. Prisms are used also for the 
discretization of the volume of conductors when a 
volumetric rather than a surface model is used to account 
for skin effect. For the case of a surface model for the 
representation of electric current flow in the conductors, 

the surface electric current density j and the surface 
electric charge density p are expanded, respectively, into 
the roof-top Rao-Wilton-Glisson (RWG) expansion 
functions [SJ, and pulse (piece-wise constant) functions 
[6]. Use of these expansion functions in conjunction with 
the Galerkin’s testing of the EFIE yields the familiar 
PEEC statement of the problem (when only conductors 
are involved), 

where Z0 is the surface impedance for 

remaining coefficients are given by, 

element a, and the 

(31 

where Go denotes the tree-space Green’s function, and the 

source Vd”’ is introduced to account for the excitation. 

The presence of finite dielectric volumes introduces extra 
unknowns, associated with the discretization of the bound 
charge and polarization current density. More specifically, 
proper expansion functions are used to represent the 

polarization current density jd = jw(&, -l)&$ inside 

the triangular prisms used for the discretization of the 
finite dielectrics. These expansion functions may ’ be 

thought of as the generalization of the roof-top basis 
functions stated earlier to three dimensions, where the 
represented transverse current densities are assumed to be 
constant in the vertical direction, while the vertical 
component of the current density is assumed constant in 
the transverse direction and exhibiting a linear (roof-top) 
function variation in the vertical direction. The details of 
the PEEC interpretation of the dielectric volume modeling 
can be found in [6]. 

In (2) conservation of electric charge has not been 
enforced. In the spirit of PEEC the enforcement of this 
condition is interpreted as the generalized form of 
Kirchhoffs current law. Let Vb, denote the vector of 
“voltages” across the “inductive” branches in the PEEC 
circuit, V, the vector of the “voltages” at the “capacitive” 
nodes, while the vectors Ibl and I, contain the 
corresponding currents, respectively. The vector of 

unknown charges is related to I$ through jwQ, = I,. 

The combination of the discrete form of the conservation 
of charge equation with (2) yields the complete form of 
the PEEC approximation of the electromagnetic problem, 
which may be cast in matrix form as follows, 

This is typically referred to as the nodal analysis PEEC 
model [4], and its matrix properties are identical to those 
of the method of moments matrix obtained for the EFIE 
using a Galerkin’s approach with the RWG as the 
expansion and testing functions. Hence, it also exhibits the 
low-frequency ill-conditioning mentioned in the 
Introduction. This ill-conditioning, in the context of 
PEEC, has also been reported in [7]. It was noted in [7] 
that, contrary to the above nodal analysis formulation of 
the discrete problem, a mesh analysis yields a more stable 
discrete system at low frequencies. In view of the 
discussion in the Introduction of the effective use of the 
loop-star decomposition of the current density to improve 
the low-frequency numerical stability of the 
approximation, the improvement obtained by the 
application of mesh analysis makes sense. At the same 
time it motivates a systematic methodology for the 
transformation of the discrete problem of [4] into one that 
is free from low-frequency numerical instability. This 
methodology is outlined in the following. 

Once the discrete PEEC model has been generated, 
application of mesh analysis requires the identification of 
all independent loops in the network graph that describes 
the discrete model. Associated with these loops is a loop 
matrix M. The identification of the loops requires the 
selection of a tree first. The proposed procedure makes the 
selection of the tree for the network that results after all 
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“capacitive” branches are opened. Hence, the independent 
loops obtained from this tree contain only “inductive” 
branches. Subsequently, the “capacitive” branches are re- 
introduced in the network and the remaining independent 
loops are identified. 

Once all independent loops have been identified, the 
mesh currents associated with these loops become the new 
unknown quantities. Let I, be the vector of the mesh 
currents. The branch currents are obtained from it through 
the mapping, Ib = MT I,,,. The loop matrix M can be used 
to express in a discrete form Faraday’s law for each one of 
the loops. More specifically, it is, 

M Vb, [ 1 ‘b, 
= v, (5) 

where the vector, Vs, of external voltage source terms has 
been identified explicitly. Clearly, (5) and the relationship 
between mesh currents and branch currents given above, 
can be utilized in (4) to recast the discrete PEEC model in 
the following form, 

(M,(Z+juL)M;, +(&I)-‘M,PM;& = V, (6) 

i’his completes the development of the alternative, mesh 
analysis-based formulation of the PEEC interpretation of 
the EFIE statement of the electromagnetic problem. Its 
superior numerical stability as the operating frequency 
tends to zkro is demonstrated through its application to the 
electromagnetic analysis of simple interconnect structures. 

II. NUMERICAL EXPERIMENTS 

The first numerical example considers the 
electromagnetic modeling of a perfectly conducting 
rectangular strip of length 2Smm and width 0.25mm. The 
strip is assumed to be of zero thickness. Voltage sources 
are connected at the two ends of the strip (see Fig. l), for 
the purposes of obtaining the two-port admittance 
parameters of the strip. Clearly, the self admittance Y~I 
represents the input admittance seen at port 1 with port 2 
shorted. Hence, it is expected to exhibit a purely inductive 

performance, i.e., Y;,(W) = -(jWL,)-’ at very low 

frequencies. Fig. 1 depicts the frequency variation of Y,, 
over the bandwidth 10 MHz - 10 GHz. It is noted that 
while the standard method of moments solution fails to 
capture the anticipated inductive behavior, the mesh 
analysis-based PEEC model captures this behavior 
successfully. This is further demo&rated through the 
extraction of the self inductance of the rectangular strip 
from the calculated values of Y,, at 10 Hz, 10 KHz, and 
10 MHz. As Table I demonstrates, excellent agreement is 
observed with the closed-form expression for the self 
inductance obtained from [8]. 

The second example considers the 4x4 interconnect 
prototype shown in Fig.2. The dimensions of the 
interconnects are as Lx=750~m,wx1=wxZ=wx~=wX~=40pm, 
sXI=sX2=sX3=40pm, Ly=680pm, d=50pm. w,l=w,2=50pm, 
w,3=w,4=50pm, and s,l=s,2=s,3=50pm. Fig.3 and Fig.4 
depict a representative set of admittance parameters and 
scattering parameters, respectively, over the frequency 
range 1 kHz to 10 GHz. The ripple behavior in the plots of 
the scattering parameters at very low frequencies is 
attributed to numerical noise since at such frequencies the 
coupling between crossing lines is so weak that may be 
considered zero for all practical purposes. 

V. CONCLUSION 

In conclusion a systematic methodology has been 
presented for the broadband electromagnetic analysis of 
interconnect structures from dc to multi-GHz frequencies. 
Such broadband analysis is essential for the design and 
performance verification of highly-integrated, mixed- 
signal circuits, of the type encountered in system-in-a- 
package and system-on-a-chip designs. The proposed 
methodology overcomes the numerical instabilities 
present in the integral equation formulations of the 
electromagnetic problem when the electrical size of the 
structure becomes a very small fraction of the operating 
wavelength. Thus, a rigorous and highly accurate analysis 
of the electromagnetic behavior of the interconnect 
structure become possible across the entire frequency 
spectrum, as demonstrated by the numerical experiments. 
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Table I Self partial inductance for a single conductor 
PEEC+Mesh Analysis 

1OHz 1 OKHZ 1 OMHz 
Explicit Formula (81 

1.764276 1.764276 1.764277 1.764325 
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Figure 1. Admittance parameter YI1 of a strip. Figure 2. 4x4 on-chip interconnect crossover. 
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Figure 3. Admittance parameters Yi,l for the 4x4 interconnect crossover. 
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Figure 4. Scattering parameters &,I for the 4x4 interconnect crossover. 
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