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Abstract - This paper presents a numerically stable
methodology. for the electromagnetic analysis of three-
dimensional interconnect structures from very low (almost
dc) to multi-GHz frequencies. The proposed methodology is
based on a generalized version of the partial element
equivalent circuit interpretation of the electric field integral
equation that utilizes triangular cells for the discretization of
conductor surfaces and thus is capable of handling structures
of arbitrary shapes. The numerical stability of the
approximate problem at very low frequencies is achieved
through capturing an appropriate tree of the network graph,
yielding an enhanced circuit mesh analysis. Numerical
experiments are used to demonstrate the numerical stability
of the numerical methodology even for frequencies at which
the structure under study is a minute fraction of the
wavelength.

1. INTRODUCTION

Broadband electromagnetic analysis of interconnect
for mixed-signal integrated circuits is essential for
accurate electromagnetic interference prediction in
compact, high-density, multi-functional systems aimed
toward system-on-a-chip designs. The interconnect and
circuit density in such systems is such that all
electromagnetic interactions need be taken into account
for accurate design. This fact has motivated the trend
toward the development of a new breed of
electromagnetic CAD tools that can address the
complexity of such circuits, while providing the
electromagnetic accuracy needed for accurate analysis.
Despite their complexity, the mixed-signal nature of their
application makes these integrated circuits electrically
small over a significant bandwidth of their application. It
is well known that standard electromagnetic integral
equation solvers become numerically unstable and thus
unreliable when applied to the solution of electrically
small structures (e.g. [1]-[3]). This difficulty in closely
related to the increasing decoupling of the electric and
magnetic fields as the frequency tends to zero. In order to
highlight one of the aspects of this decoupling, consider

the equation E = - jo4d -~ V® that leads to the electric

field integral equation (EFIE) formulation of the

electromagnetic boundary value problem. Recognizing the
fact that the vector potential term is proportional to jw.J

while the scalar potential is proportional to (jw)™'V J it
is clear that the contribution from the vector potential term
will be lost in the finite-precision numerical solution of
the problem as the frequency tends to zero. As explained
in detail in [3], this difficulty can be overcome through a
loop-star or loop-tree decomposition of the unknown
current distribution, so that the solenoidal (divergence-
free) component of the current, responsible for the quasi-
static magnetic field, and its complementary (curl-free)
component, responsible for the quasi-static electric field,
are modeled independently. The two components of the
current density exhibit disparate frequency dependency
that is instrumental in improving the stability of the
numerical solution of the EFIE at very low frequencies
while maintaining solution accuracy.

It is shown in this paper that, in the context of the
partial element equivalent circuit (PEEC) interpretation of
the EFIE [4], the benefits from the loop-tree-like
decomposition of the unknown current density can be
realized in an alternative and more straightforward
fashion, through the re-formulation of the PEEC
interpretation of the EFIE in the spirit of an enhanced
circuit mesh analysis.

II. MATHEMATICAL FORMULATION

The important attribute of the PEEC formulation of the
electromagnetic problem is that leads directly to a
description of the electromagnetic problem in terms
electromagnetically retarded couplings between the
unknown currents and charges in the discrete model that
maintain their inductive and capacitive nature familiar
from the distributed lumped-circuit representation of
electromagnetic effects at low frequencies. Thus the

‘PEEC model can be used for the direct synthesis of

equivalent circuit representations of electromagnetic
interactions in complex integrated circuits. The PEEC
formulation is based in the enforcement of a discrete
approximation of the equation for the electric field,
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E(F) = —ja)A(r) Vo(7r) 0))
through a Galerkin’s testing at each and every element in
the discrete model of the interconnect structure. In the
above equation, A(F) and O(F) are, respectively, the
magnetic vector and electric scalar potentials. Their
expressions in terms of Poisson’s integrals are well
known. In the proposed formulation, polarization cunent§
are introduced to account for the presence of
inhomogeneous dielectric volumes. Therefore, the
Green’s function used in the Poisson’s integrals for the
potential is the free-space Green’s function. Furthermore,
a triangular mesh is used for the discretization of
conductor surfaces. Dielectric volumes are discretized by
means of prisms. Prisms are used also for the
discretization of the volume of conductors when a
volumetric rather than a surface model is used to account
for skin effect. For the case of a surface model for the
representation of electric current flow in the conductors,
the surface electric current density J and the surface
electric charge density p are expanded, respectively, into
the roof-top Rao-Wilton-Glisson (RWG) expansion
functions [5], and pulse (piece-wise constant) functions
[6]. Use of these expansion functions in conjunction with
the Galerkin’s testing of the EFIE yields the familiar
PEEC statement of the problem (when only conductors
are involved),

zZ1, +Z](0L I, —ZpﬂmQ +me m:Va(s) ¥}

n=1 m=1

where Zis the surface impedance for element a, and the
remaining coefficients are given by,

ol | FAGLN | KN GRIVAG

T’ +T; T +T;
Py = 47[50 J.quds HG (F.7) 3
P = o, ) ds HG F,F)

where Gy denotes the free-space Green’s function, and the

source ¥ is introduced to account for the excitation.

The presence of finite dielectric volumes introduces extra
unknowns, associated with the discretization of the bound
charge and polarization current density. More specifically,
proper expansion functions are used to represent the

= jo(e, —1)&,E inside
the triangular prisms used for the discretization of the
finite dielectrics. These expansion functions may ”be

polarization current density J,

thought of as the generalization of the roof-top basis
functions stated earlier to three dimensions, where the
represented transverse current densities are assumed to be
constant in the vertical direction, while the vertical
component of the current density is assumed constant in
the transverse direction and exhibiting a linear (roof-top)
function variation in the vertical direction. The details of
the PEEC interpretation of the dielectric volume modeling
can be found in [6].

In (2) conservation of electric charge has not been
enforced. In the spirit of PEEC the enforcement of this
condition is interpreted as the generalized form of
Kirchhoff’s current law. Let V, denote the vector of
“voltages” across the “inductive” branches in the PEEC
circuit, VY, the vector of the “voltages™ at the “capacitive”
nodes, while the vectors Iy and Iy, contain the
corresponding currents, respectively. The vector of

unknown charges is related to I, through jwQ, =1,

The combination of the discrete form of the conservation
of charge equation with (2) yields the complete form of
the PEEC approximation of the electromagnetic problem,
which may be cast in matrix form as follows,
':Zs'*'ij 0 ] Ibl:] Vbl:! @
0 (ja))“l P Ibp pr

This is typically referred to as the nodal analysis PEEC
model [4], and its matrix properties are identical to those
of the method of moments matrix obtained for the EFIE
using a Galerkin’s approach with the RWG as the
expansion and testing functions. Hence, it also exhibits the
low-frequency  ill-conditioning mentioned in the
Introduction. This ill-conditioning, in the context of
PEEC, has also been reported in [7]. It was noted in [7]
that, contrary to the above nodal analysis formulation of
the discrete problem, a mesh analysis yields a more stable
discrete system at low frequencies. In view of the
discussion in the Introduction of the effective use of the
loop-star decomposition of the current density to improve
the low-frequency numerical stability of the
approximation, the improvement obtained by the
application of mesh analysis makes sense. At the same
time it motivates a systematic methodology for the
transformation of the discrete problem of [4] into one that
is free from low-frequency numerical instability. This
methodology is outlined in the following.

Once the discrete PEEC model has been generated,
application of mesh analysis requires the identification of
all independent loops in the network graph that describes
the discrete model. Associated with these loops is a loop
matrix M. The identification of the loops requires the
selection of a tree first. The proposed procedure makes the
selection of the tree for the network that results after all
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“capacitive” branches are opened. Hence, the independent
loops obtained from this tree contain only “inductive”
branches. Subsequently, the “capacitive” branches are re-
introduced in the network and the remaining independent
loops are identified.

Once all independent loops have been identified, the
mesh currents associated with these loops become the new
unknown quantities. Let I, be the vector of the mesh:
currents. The branch currents are obtained from it through
the mapping, I, = M7 L. The loop matrix M can be used
to express in a discrete form Faraday’s law for each one of
the loops. More specifically, it is,

M[V"’}v (5)
V s

bp

where the vector, Vg, of external voltage source terms has
been identified explicitly. Clearly, (5) and the relationship
between mesh currents and branch currents given above,
can be utilized in (4) to recast the discrete PEEC model in
the following form,

(M, (Z + joL)M], + (j©) "M, PM}, )L, =V, (6)

This completes the development of the alternative, mesh
analysis-based formulation of the PEEC interpretation of
the EFIE statement of the electromagnetic problem. Its
superior numerical stability as the operating frequency
tends to zero is demonstrated through its application to the
electromagnetic analysis of simple interconnect structures.

II. NUMERICAL EXPERIMENTS

The first numerical example considers the
electromagnetic modeling of a perfectly conducting
rectangular strip of length 2.5mm and width 0.25mm. The
strip is assumed to be of zero thickness. Voltage sources
are connected at the two ends of the strip (see Fig. 1), for
the purposes of obtaining the two-port admittance
parameters of the strip. Clearly, the self admittance Yy,
represents the input admittance seen at port 1 with port 2
shorted. Hence, it is expected to exhibit a purely inductive

performance, ie., ¥, (@0)=-(joLs)" at very low

frequencies. Fig. 1 depicts the frequency variation of Y,
over the bandwidth 10 MHz - 10 GHz. It is noted that
while the standard method of moments solution fails to
capture the anticipated inductive behavior, the mesh
analysis-based PEEC model captures this behavior
successfully. This is further demonstrated through the
extraction of the self inductance of the rectangular strip
from the calculated values of Y}, at 10 Hz, 10 KHz, and
10 MHz. As Table I demonstrates, excellent agreement is
observed with the closed-form expression for the self
inductance obtained from [8].

The second example considers the 4x4 interconnect
prototype shown in Fig.2. The dimensions of the
interconnects are as L,=750um, w1 =W,y=W,3=W4=40um,
Sa1=8x2=83=40um, Ly=680um, d=50pum. wy;=wy,,=50pm,
Wy3=Wy=30um, and sy=s,;=s,3=50um. Fig.3 and Fig.4
depict a representative set of admittance parameters and
scattering parameters, respectively, over the frequency
range 1 kHz to 10 GHz. The ripple behavior in the plots of
the scattering parameters at very low frequencies is
attributed to numerical noise since at such frequencies the
coupling between crossing lines is so weak that may be
considered zero for all practical purposes.

V. CONCLUSION

In conclusion a systematic methodology has been
presented for the broadband electromagnetic analysis of
interconnect structures from dc to multi-GHz frequencies.
Such broadband analysis is essential for the design and
performance verification of highly-integrated, mixed-
signal circuits, of the type encountered in system-in-a-
package and system-on-a-chip designs. The proposed
methodology overcomes the numerical instabilities
present in the integral equation formulations of the
electromagnetic problem when the electrical size of the
structure becomes a very small fraction of the operating
wavelength. Thus, a rigorous and highly accurate analysis
of the electromagnetic behavior of the interconnect
structure become possible across the entire frequency
spectrum, as demonstrated by the numerical experiments.
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Table I Self partial inductance for a single conductor

PEEC+Mesh Analysis Explicit Formula (8]
Frequency 10Hz 10KHz 10MHz
Ls (nH) 1.764276 1.764276 1.764277 1.764325
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Figure 1. Admittance parameter Yy, of a strip.
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Figure 2. 4x4 on-chip interconnect crossover.
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Figure 3. Admittance parameters Y;, for the 4x4 interconnect crossover.
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Figure 4. Scattering parameters S;; for the 4x4 interconnect crossover.
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